Thoreum (THR) — Whitepaper v1.0

Mainnet Launch Date: 1 November 2025

Chain ID: 357

Consensus: Proof-of-Work (Ethash)

Block Time: ~12 seconds

Abstract

Thoreum is a miner-focused, Proof-of-Work (PoW), EVM-compatible Layer-1 blockchain built to restore the original ethos of decentralized computation. Thoreum prioritizes permissionless security, predictable issuance, and practical usability. The network also introduces **Stablecoin Side Layers**—dedicated sidechains where **stablecoins are used as gas**—to reduce friction for mainstream users and to accelerate mass adoption. On these side layers, **80% of transaction fees** accrue to validators and **20%** funds **THR buybacks & support**, reinforcing alignment between utility usage and THR value.

Vision & Principles

- **True Decentralization:** Security emerges from open competition for block production (PoW), not from stake concentration.
- Miner-First Economics: 100% of block rewards go to miners; no perpetual developer cuts.
- Ethereum Compatibility: EVM and standard tooling enable immediate developer productivity.
- Predictable Scarcity: Fixed maximum supply and a transparent emission curve.
- **Practical Adoption:** Stablecoin side layers make crypto usage intuitive for everyday payments and applications.

Motivation

After Ethereum's transition to Proof-of-Stake, the PoW ecosystem retained a vast base of miners, hardware manufacturers, and infrastructure providers. Thoreum aims to catalyze this community with a clean, modern PoW L1: predictable issuance, no hidden taxes, and a clear path to end-user utility via side layers where stablecoins serve as gas.

System Architecture

1) Base Layer (PoW L1)

• Consensus: Ethash PoW

• Average Block Time: ~12s

• **Finality:** Probabilistic (longest chain rule)

• **Execution:** EVM compatible

• State Model: Ethereum-style account model

• Gas & Fees: Paid in THR on the base chain

2) Stablecoin Side Layers

Purpose-built sidechains optimized for payments and consumer dApps:

- Gas Asset: Stablecoins (e.g., USD-pegged tokens) are used as gas on side layers.
- **Bridging:** Canonical bridges connect the Thoreum base chain to side layers for asset portability.
- **Throughput:** Configurable block times & gas limits to achieve high TPS for real-world usage.
- Fee Distribution: 80% to side-layer validators, 20% to THR buyback & support.
- Developer UX: EVM-compatible where applicable, with standard RPCs, JSON-RPC methods, and tooling.

3) Security Model

- Base Layer Security: Secured by PoW hashpower (Ethash).
- **Side Layer Security:** Validator sets chosen per side layer (PoA) with verifiable bridges and periodic settlement/checkpointing to the base chain.

Consensus & Networking

- Consensus: Proof-of-Work (Ethash).
- **Difficulty Adjustment:** Ethereum-style dynamic targeting ~12s block time.
- Fork Choice Rule: Longest/Heaviest chain.
- **Networking:** DevP2P-inspired; peer discovery via bootnodes; anti-spam heuristics at the node level.

Token (THR) Utility

- **Gas on Base Layer:** THR is required for transactions and contract execution on the main chain.
- **Base Pair:** Ecosystem assets are quoted and traded against THR (e.g., XYZ/THR), promoting liquidity depth.
- **Economic Backbone:** THR aligns miners, developers, users, and validators via buybacks from side-layer activity.
- **Store of Value:** THR serves as a digital asset designed for long-term value preservation, supported by fixed supply and buyback mechanisms.

Monetary Policy & Tokenomics

• Ticker: THR

Max Supply: 100,000,000 THR

• Premine: 5% (5,000,000 THR)

• Mineable: 95% (95,000,000 THR)

• Dev Fee: None

• Uncle Block Reward: None

Emission Schedule (Block-Indexed)

• **Blocks 1 – 100,000:** 10 THR / block

• 100,001 - 200,000: 8 THR / block

• 200,001 - 300,000: 6 THR / block

• 300,001 - 400,000: 4 THR / block

• 400,001 - 500,000: 2 THR / block

• 500,001 - 1,000,000: 1 THR / block

• 1,000,001 - 2,000,000: 0.5 THR / block

• 2,000,001 - 912,000,000: 0.1 THR / block

Economic Rationale

- Miner Alignment: 100% of block rewards go to miners; no continuous rent extraction.
- Predictable Scarcity: Clear schedule, capped supply, and no discretionary minting.
- Value Feedback Loop: Side-layer usage → fee revenue → THR buyback (20% of side-layer fees) → strengthens THR liquidity/price support.

Stablecoin Side Layers — Design

Goals

- 1. **Frictionless UX:** Users can pay gas in the units they already hold/understand (stablecoins).
- 2. Merchant Readiness: Low-variance fees in fiat terms, predictable cost basis.
- 3. **Throughput:** Configuration to support retail payments and consumer apps.

Mechanics

- **Gas:** Paid directly in supported stablecoins (e.g., USDT/USDC variants approved per side layer).
- Fee Routing: 80% → validators; 20% → on-chain THR buyback treasury.
- **Bridging & Finality:** Canonical bridges with periodic checkpoints to the base chain.
- **Compliance Toggle:** Per-side-layer allowlists/denylists for assets if required by regional partners.

Developer Experience

- **EVM Tooling:** Remix/Hardhat/Foundry compatible (where the side layer is EVM).
- **Standards:** ERC-20/721/1155 supported on EVM-side layers; SDKs for non-EVM side layers where applicable.
- Oracles: Pluggable oracle framework; price feeds for stablecoins and THR pairs.

Reference Parameters

- Chain ID: 357
- Average Block Time: ~12s
- Target TPS (base layer): conservative single-digit to low-double-digit range, depending on gas limits
- Gas Limit: Governed by protocol parameters; adjustable via client releases

Governance

- **Protocol Stewardship:** Thoreum improvement proposals (TIPs) published for community feedback.
- **Client Governance:** Changes to consensus parameters require multi-client readiness and community signaling before activation.

Mining Overview

- Algorithm: Ethash
- Hardware: GPUs/ASICs compatible with Ethash
- Pools: Open ecosystem; incentives for early pool listings via bounty programs
- Configs: Standard DAG management; recommended drivers and overclocks provided in docs

Developer Quickstart

- 1. **Connect:** Use RPC endpoint from official docs; Chain ID 357.
- 2. **Deploy:** Standard EVM toolchains (Hardhat/Foundry/Truffle).
- 3. **Index:** Use community indexers or run a node with archive/pruning modes as needed.
- 4. **Test:** Public testnets & faucets (post-launch) for rapid prototyping.

Compliance & Risk Disclosure

- **Regulatory:** Thoreum is a decentralized protocol. Regional compliance requirements for exchanges, wallets, and payment use cases may vary.
- Market Risk: THR's price can be volatile. Users should assess risk tolerance before participating.
- **Technical Risk:** Smart contracts and bridges may contain undiscovered vulnerabilities despite audits.
- Operational Risk: Validator misconfiguration or network partitions may impact side-layer performance.

Glossary

- **PoW:** Proof-of-Work, consensus secured by computational work.
- **EVM:** Ethereum Virtual Machine, execution environment for smart contracts.
- **Side Layer:** An auxiliary chain connected to the base chain, optimized for specific use cases.
- **Gas:** Fee paid to execute transactions and smart contracts.

Conclusion

Thoreum is built on a simple promise: **miners secure**, **builders deploy**, **users thrive**. By combining a fair PoW base chain with stablecoin-powered side layers, Thoreum forges a practical path to global adoption—without compromising decentralization.

Learn more: https://thoreum.org